2,640 research outputs found

    Targeting Protein O-GlcNAcylation, a Link between Type 2 Diabetes Mellitus and Inflammatory Disease

    Get PDF
    Unresolved hyperglycaemia, a hallmark of type 2 diabetes mellitus (T2DM), is a well characterised manifestation of altered fuel homeostasis and our understanding of its role in the pathologic activation of the inflammatory system continues to grow. Metabolic disorders like T2DM trigger changes in the regulation of key cellular processes such as cell trafficking and proliferation, and manifest as chronic inflammatory disorders with severe long-term consequences. Activation of inflammatory pathways has recently emerged as a critical link between T2DM and inflammation. A substantial body of evidence has suggested that this is due in part to increased flux through the hexosamine biosynthetic pathway (HBP). The HBP, a unique nutrient-sensing metabolic pathway, produces the activated amino sugar UDP-GlcNAc which is a critical substrate for protein O-GlcNAcylation, a dynamic, reversible post-translational glycosylation of serine and threonine residues in target proteins. Protein O-GlcNAcylation impacts a range of cellular processes, including inflammation, metabolism, trafficking, and cytoskeletal organisation. As increased HBP flux culminates in increased protein O-GlcNAcylation, we propose that targeting O-GlcNAcylation may be a viable therapeutic strategy for the prevention and management of glucose-dependent pathologies with inflammatory components

    Molecular Mechanisms Linking Diabetes with Increased Risk of Thrombosis

    Get PDF
    This review will provide an overview of what is currently known about mechanisms linking poor glycaemic control with increased thrombotic risk. The leading causes of death in people with diabetes are strokes and cardiovascular disease. Significant morbidity is associated with an increased risk of thrombosis, resulting in myocardial infarction, ischaemic stroke, and peripheral vascular disease, along with the sequelae of these events, including loss of functional ability, heart failure, and amputations. While the increased platelet activity, pro-coagulability, and endothelial dysfunction directly impact this risk, the molecular mechanisms linking poor glycaemic control with increased thrombotic risk remain unclear. This review highlights the complex mechanisms underlying thrombosis prevalence in individuals with diabetes and hyperglycaemia. Post-translational modifications, such as O-GlcNAcylation, play a crucial role in controlling protein function in diabetes. However, the role of O-GlcNAcylation remains poorly understood due to its intricate regulation and the potential involvement of multiple variables. Further research is needed to determine the precise impact of O-GlcNAcylation on specific disease processes

    A769662 inhibits insulin-stimulated akt activation in human macrovascular endothelial cells independent of AMP-activated protein kinase

    Get PDF
    Protein kinase B (Akt) is a key enzyme in the insulin signalling cascade, required for insulin-stimulated NO production in endothelial cells (ECs). Previous studies have suggested that AMP-activated protein kinase (AMPK) activation stimulates NO synthesis and enhances insulin-stimulated Akt activation, yet these studies have largely used indirect activators of AMPK. The effects of the allosteric AMPK activator A769662 on insulin signalling and endothelial function was therefore examined in cultured human macrovascular ECs. Surprisingly, A769662 inhibited insulin-stimulated NO synthesis and Akt phosphorylation in human ECs from umbilical veins (HUVECs) and aorta (HAECs). In contrast, the AMPK activators compound 991 and AICAR had no substantial inhibitory effect on insulin-stimulated Akt phosphorylation in ECs. Inhibition of AMPK with SBI-0206965 had no effect on the inhibition of insulin-stimulated Akt phosphorylation by A769662, suggesting the inhibitory action of A769662 is AMPK-independent. A769662 decreased IGF1-stimulated Akt phosphorylation yet had no effect on VEGF-stimulated Akt signalling in HUVECs, suggesting that A769662 attenuates early insulin/IGF1 signalling. The effects of A769662 on insulin-stimulated Akt phosphorylation were specific to human ECs, as no effect was observed in the human cancer cell lines HepG2 or HeLa, as well as in mouse embryonic fibroblasts (MEFs). A769662 inhibited insulin-stimulated Erk1/2 phosphorylation in HAECs and MEFs, an effect that was independent of AMPK in MEFs. Therefore, despite being a potent AMPK activator, A769662 has effects unlikely to be mediated by AMPK in human macrovascular ECs that reduce insulin sensitivity and eNOS activation

    Do T2DM and Hyperglycaemia Affect the Expression Levels of the Regulating Enzymes of Cellular O-GlcNAcylation in Human Saphenous Vein Smooth Muscle Cells?

    Get PDF
    Protein O-GlcNAcylation, a dynamic and reversible glucose-dependent post-translational modification of serine and threonine residues on target proteins, has been proposed to promote vascular smooth muscle cell proliferation and migration events implicated in vein graft failure (VGF). Therefore, targeting the enzymes (glutamine fructose-6P amidotransferase (GFAT), O-GlcNAc transferase (OGT), and O-GlcNAcase (OGA)) that regulate cellular O-GlcNAcylation could offer therapeutic options to reduce neointimal hyperplasia and venous stenosis responsible for VGF. However, it is unclear how type 2 diabetes mellitus (T2DM) and hyperglycaemia affect the expression of these enzymes in human saphenous vein smooth muscle cells (HSVSMCs), a key cell type involved in the vascular dysfunction responsible for saphenous VGF. Therefore, our aim was to assess whether T2DM and hyperglycaemia affect GFAT, OGT, and OGA expression levels in HSVSMCs in vitro. Expression levels of GFAT, OGT, and OGA were determined in low-passage HSVSMCs from T2DM and non-T2DM patients, and in HSVSMCs treated for 48 h with hyperglycaemic (10 mM and 25 mM) glucose concentrations, by quantitative immunoblotting. Expression levels of OGT, OGA, and GFAT were not significantly different in HSVSMC lysates from T2DM patients versus non-T2DM controls. In addition, treatment with high glucose concentrations (10 mM and 25 mM) had no significant effect on the protein levels of these enzymes in HSVSMC lysates. From our findings, T2DM and hyperglycaemia do not significantly impact the expression levels of the O-GlcNAcylation-regulating enzymes OGT, OGA, and GFAT in HSVSMCs. This study provides a foundation for future studies to assess the role of O-GlcNAcylation on VGF in T2DM

    Geospatial simulations of airborne ice-penetrating radar surveying reveal elevation under-measurement bias for ice-sheet bed topography

    Get PDF
    © The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/).Airborne radio-echo sounding (RES) surveys are widely used to measure ice-sheet bed topography. Measuring bed topography as accurately and widely as possible is of critical importance to modelling ice dynamics and hence to constraining better future ice response to climate change. Measurement accuracy of RES surveys is influenced both by the geometry of bed topography and the survey design. Here we develop a novel approach for simulating RES surveys over glaciated terrain, to quantify the sensitivity of derived bed elevation to topographic geometry. Furthermore, we investigate how measurement errors influence the quantification of glacial valley geometry. We find a negative bias across RES measurements, where off-nadir return measurement error is typically -1.8 ± 11.6 m. Topographic highlands are under-measured an order of magnitude more than lowlands. Consequently, valley depth and cross-sectional area are largely under-estimated. While overall estimates of ice thickness are likely too high, we find large glacier valley cross-sectional area to be under-estimated by -2.8 ± 18.1%. Therefore, estimates of ice flux through large outlet glaciers are likely too low when this effect is not taken into account. Additionally, bed mismeasurements potentially impact our appreciation of outlet-glacier stability.Peer reviewedFinal Published versio

    Interaction of suppressor of cytokine signalling 3 with cavin-1 links SOCS3 function and cavin-1 stability

    Get PDF
    YesEffective suppression of JAK–STAT signalling by the inducible inhibitor “suppressor of cytokine signalling 3” (SOCS3) is essential for limiting signalling from cytokine receptors. Here we show that cavin-1, a component of caveolae, is a functionally significant SOCS3- interacting protein. Biochemical and confocal imaging demonstrate that SOCS3 localisation to the plasma membrane requires cavin-1. SOCS3 is also critical for cavin-1 stabilisation, such that deletion of SOCS3 reduces the expression of cavin-1 and caveolin-1 proteins, thereby reducing caveola abundance in endothelial cells. Moreover, the interaction of cavin-1 and SOCS3 is essential for SOCS3 function, as loss of cavin-1 enhances cytokine-stimulated STAT3 phosphorylation and abolishes SOCS3-dependent inhibition of IL-6 signalling by cyclic AMP. Together, these findings reveal a new functionally important mechanism linking SOCS3-mediated inhibition of cytokine signalling to localisation at the plasma membrane via interaction with and stabilisation of cavin-1.This work was supported by project grants to T.M.P. from the Chief Scientist Office (ETM/226), British Heart Foundation (PG12/1/ 29276, PG 14/32/30812), and a National Health Service Greater Glasgow and Clyde Research Endowment Fund (2011REFCH08). P.F.P. was supported by the National Institutes of Health grant DK097708. J.J.L.W. was supported by a doctoral training studentship from the Biotechnology and Biological Sciences Research Council Doctoral Training Programme in Biochemistry and Molecular Biology at the University of Glasgow (BB/F016735/1). N.A. was supported by a Saudi Government PhD Scholarship. This work was also supported in part by equipment grants to T.M.P. from Diabetes UK (BDA 11/0004309) and Alzheimer’s Research UK (ARUK-EG2016A-3)

    Efficacy and Safety of Ertugliflozin in Patients With Type 2 Diabetes Mellitus and Established Cardiovascular Disease Treated With Metformin and Sulfonylurea

    Get PDF
    Abstract Introduction: Ertugliflozin (ERTU), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes mellitus (T2DM). Aim: As a pre-specified sub-study of the Phase 3 VERTIS CV trial (NCT01986881), the efficacy and safety of ERTU were assessed in patients with T2DM and established atherosclerotic cardiovascular disease (ASCVD) inadequately controlled with metformin and sulfonylurea (SU). Methods: Patients with T2DM, established ASCVD, and HbA1c 7.0–10.5% on stable metformin (≥1500 mg/day) and SU doses as defined per protocol were randomized to once-daily ERTU (5 mg or 15 mg) or placebo. The primary sub-study objectives were to assess the effect of ERTU on HbA1c compared with placebo and to evaluate safety and tolerability during 18-week follow-up. Key secondary endpoints included proportion of patients achieving HbA1c <7%, fasting plasma glucose (FPG), body weight, and systolic blood pressure. Changes from baseline at Week 18 for continuous efficacy endpoints were assessed using a constrained longitudinal data analysis model. Results: Of the 8246 patients enrolled in the VERTIS CV trial, 330 patients were eligible for this sub-study (ERTU 5 mg, n=100; ERTU 15 mg, n=113; placebo, n=117). Patients had a mean (SD) age of 63.2 (8.4) years, T2DM duration 11.4 (7.4) years, estimated glomerular filtration rate 83.5 (17.8) mL/min/1.73 m2, and HbA1c 8.3% (1.0) (67.4 [10.6] mmol/mol). At Week 18, ERTU 5 mg and 15 mg were each associated with a significantly greater least squares mean (95% CI) HbA1c reduction from baseline versus placebo; the placebo-adjusted differences for ERTU 5 mg and 15 mg were –0.7% (–0.9, –0.4) and –0.8% (–1.0, –0.5), respectively (P<0.001). A higher proportion of patients in each ERTU group achieved HbA1c <7% relative to placebo (P<0.001). ERTU significantly reduced FPG and body weight (P<0.001, for each dose versus placebo), but not systolic blood pressure. Adverse events were reported in 48.0%, 54.9%, and 47.0% of patients in the ERTU 5 mg, 15 mg, and placebo groups, respectively. Genital mycotic infections were experienced by significantly higher proportions of male patients who received ERTU 5 mg and 15 mg (4.2% and 4.8%, respectively) versus placebo (0.0%; P≤0.05) and by a numerically, but not significantly, higher proportion of female patients who received ERTU 15 mg (10.3%) compared with placebo (3.8%) (P=0.36). The incidences of symptomatic hypoglycemia were 11.0% (5 mg), 12.4% (15 mg), and 7.7% (placebo), and of severe hypoglycemia 2.0% (5 mg), 1.8% (15 mg), and 0.9% (placebo). Conclusion: Among patients with T2DM and ASCVD, ERTU (5 mg and 15 mg) added to metformin and SU for 18 weeks improved glycemic control (HbA1c and FPG) and reduced body weight, and was generally well tolerated with a safety profile consistent with the SGLT2 inhibitor class
    • …
    corecore